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MRI Application

MRI rosette k-space trajectory
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Simplified MRI Signal Model

Ignoring lots of things:

yi = s(ti)+noisei, i = 1, . . . ,Nsamples

s(t) =
∫

f (~r)exp
(
−ı2π~k(t) ·~r

)
d~r,

where~k(t) denotes the “k-space trajectory” of the MR pulse sequence.

• MRI measurements are (roughly) samples of the Fourier transform
of the object’s transverse magnetization f (~r).

• Reconstruction problem: recover f (~r) from measurements {yi}
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Conventional MR Image Reconstruction

1. Interpolate measurements onto rectilinear grid (“gridding”)

2. Apply inverse FFT to estimate samples of f (~r)
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Gridding from Polar to Cartesian
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Limitations of MR gridding-based reconstruction

1. Artifacts/inaccuracies due to interpolation

2. Contention about sample density “weighting”

3. Oversimplifications of Fourier transform signal model:

• Magnetic field inhomogeneity
• Magnetization decay (T2)
• Eddy currents
• ...
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Statistical MR Image Reconstruction

1. Series expansion of unknown object:

f (~r)≈
np

∑
j=1

xj b(~r−~r j)

2. Discrete-discrete measurement model:

y = Ax+ε

ai j =
∫

b(~r−~r j)exp
(
−ı2π~k(ti) ·~r

)
d~r = B(~k(ti))e

−ı2π~k(ti)·~r j

3. ε includes both measurement noise and model error

4. A can also include “non-Fourier” effects (inhomogeneity, decay, etc.)

5. Least-squares formulation (Gaussian noise model):

x̂= argmin
x

Ψ(x), Ψ(x) = ‖y−Ax‖2

6. Regularization included when needed (depends on~k(t))

7. Iterative preconditioned conjugate gradient algorithm for minimization.
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Challenges for iterative MR image reconstruction

• Each PCG iteration requires calculation ofA′(y−Ax(n))

• A is too large to store explicitly (not sparse)

• Even if A were stored, directly computing Ax is O(n2
p), per iteration,

whereas FFT is only O(np lognp)

⇒ need fast algorithm for computing Ax, i.e., for computing

∑
n1

∑
n2

e−ı2π(k1(ti)n1+k2(ti)n2)x(n1,n2),

assuming the~r j ’s (basis centers) are unit spaced on a rectilinear grid.

Need: fast algorithm for 2D nonuniform Fourier transform
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Tomography Application
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Simplified tomography measurement model (sinogram):

yi = (h∗ pθi(·; f ))(ri)+noisei, i = 1, . . . ,nd, nd = nr ·nθ.

Radon transform degraded by radially shift-invariant blur with PSF h(r).

Radon transform (line integrals):

pθ(r; f ) =
∫

f (r cosθ− l sinθ, r sinθ+ l cosθ)dl

Goal: reconstruct object f (~r) from sinogram measurements {yi}
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Classical Fourier-transform reconstruction

Fourier-slice theorem:

pθ(r; f )
1D FT
←→ Pθ(ρ) = F(ρ,θ) 2D FT

←→ f (x,y)

• Compute 1D FFT of each row of sinogram.
• Possibly deconvolve blur h(r)
• Interpolate from polar samples onto rectilinear frequency samples
• Compute inverse 2D FFT

Limitations

• Artifacts due to polar-cartesian interpolation
• Suboptimal treatment of nonuniform-variance noise, e.g., Poisson
• Over-simplified measurement model
• Disregards nonnegativity constraint

Proposed approach partially overcomes first two limitations
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Iterative Tomographic Image Reconstruction

1. Series expansion of unknown object:

f (~r)≈
np

∑
j=1

xj b(~r−~r j)

2. Discrete-discrete measurement model

y =Ax+ε, ai j = h(r)∗ pθi(r;b(·−~r j))
∣∣∣
r=ri

3. Penalized weighted least-squares (PWLS) formulation

x̂= argmin
x

Ψ(x), Ψ(x) = (y−Ax)′W (y−Ax)+βR(x)

4. Weighting matrixW for nonuniform noise variance
(cf Delaney and Bresler, IEEE T-IP, May 1996)

5. Regularization essential due to ill-conditioned nature of tomography

6. Iterative preconditioned conjugate gradient algorithm for minimization
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Challenges for Iterative Tomographic Reconstruction

• Each PCG iteration requires calculation ofA′W (y−Ax(n))

• A is sparse, but very large for 3D PET, too large to store in 2D X-ray CT

• Even if A were stored, directly computing Ax is O(n2
p), per iteration,

whereas FFT is only O(np lognp)

Proposed approach for reprojection (computingAx)

1. Apply nonuniform FFT to compute 2D FT on a polar grid accurately

2. Apply shift-invariant blur h(r) in frequency domain

3. Compute inverse 1D FFT to form each row of reprojection

• Avoids line-integral calculations!
• Routine for A′ is the exact adjoint
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Prior work on NUFFT
• [1] Dutt & Rokhlin, SIAM JSC, 1993

Fast Fourier transforms for nonequispaced data.
Gaussian based interpolation
• [2] Beylkin, ACHA, 1995

On the fast Fourier transform of functions with singularities.
B-spline based interpolation in multiresolution framework (N-D)
• [3] Dutt & Rokhlin, ACHA, 1995

Fast Fourier transforms for nonequispaced data, II.
fast multipole method
• [4] Anderson & Dahleh, SIAM JSC, 1996

Rapid computation of the discrete Fourier transform.
Taylor series expansion, requiring multiple FFTs
• [5] Nguyen & Liu, SIAM JSC, 1999

The regular Fourier matrices and nonuniform fast Fourier transforms.
least-squares approach to shift-variant Fourier interpolation

• [6] Sutton, Fessler, & Noll, ISMRM, 2001
A min-max approach to the nonuniform N-D FFT for rapid iterative reconstruc-
tion of MR images.
• [7] Fessler & Sutton, IEEE T-SP, 2001 (Submitted)

Nonuniform fast Fourier transforms using min-max interpolation.
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NUFFT Problem Statement (1D)

Given signal xn, n= 0, . . . ,N−1 with (discrete-time) Fourier transform

X(ω) =
N−1

∑
n=0

xne
−ıωn

and a collection of arbitrary frequencies {ωm : m= 1, . . . ,M}, compute

ym= X(ωm), m= 1, . . . ,M.

Direct approach is O(NM); impractical for large M.
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NUFFT via linear interpolation

1. Compute K-point FFT of xn (where K ≥ N, possibly oversampled)

Xk= X

(
2πk
K

)
, k= 0, . . . ,K−1

2. Interpolate from set {2πk/K} to set {ωm}

ŷm=
K−1

∑
k=0

vmkXk

Design question: how to choose interpolation coefficients {vmk}?

Scaled variation

1. Start with “weighted” K-point FFT:

Yk=
N−1

∑
n=0

snxne
−ı2πk

K n

2. Design problem includes choosing scaling factors {sn}. (Important!)
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Interpolators

1. Shift invariant

• Gaussian
• B-spline
• ...

• Rarely precomputed
• Less memory
• More in-line work

2. Shift variant
• Constraint: use the J nearest FFT samples to interpolate onto each ωm

ŷm=
J

∑
j=1

u?m jXk0(ωm)+ j, where k0(ω)
4
=

{ (
argmink

∣∣ω− 2π
K k
∣∣)− J+1

2 , J odd(
max
{

k : ω≥ 2π
K k
})
− J

2, J even.

0

50

100

π−π π/2−π/2 ω

X
(ω

)

?

• O(JM) memory if interpolation coefficients are precomputed
• O(K logK)+O(JM) computation
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Min-Max Criterion

Choose interpolation cofficients {um j} to minimize worst-case error.

min
um∈C J

max
x∈C N :‖x‖≤1

|ŷm−ym|, where um= (um1, . . . ,umJ).

Solution (data independent!):

um = Λ
′(ω)Tr(ωm), where:

Λ j j (ω) = e−ı[ω−2π
K (k0(ω)+ j)]N−1

2

T = [C ′C]−1 ∈ IRJ×J

[C ′C]l , j = δ0( j− l)
r j(ω) = δ0(ω/(2π/K)−k0(ω)− j)

δ0(t)
4
=

sin(πtN/K)
Nsin(πt/K)

.

“Modified truncated-Dirichlet interpolation of oversampled FFT”
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Accuracy

Error for worst-case unit-norm signal x ∈ C

N is Emax(ω) =
√

N
√

1−r′(ω)Tr(ω).
Worst-case error for ω usually at midpoint between two nearest FFT neighbors.
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Comparison with Dirichlet
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Comparison with Gaussian (Dutt/Rokhlin)
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Extensions

• Multidimensional NUFFT
Use J×J neighborhood (in 2D, e.g.) around each spatial frequency location of
interest. Straightforward generalization.

• Adjoint operator

1. Hermitian transpose of interpolation matrix
2. K-point inverse FFT

• Adaptive neighborhoods
Neighborhood size J vs distance between ωm and nearest neighbor.

• Free software: http://www.eecs.umich.edu/ ∼fessler
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Kaiser-Bessel Interpolator

F(κ) = f m
J (κ)

Im(α fJ(κ))
Im(α)

, where fJ(κ)
4
=



√

1−

(
κ

J/2

)2

, |κ|< J/2

0, otherwise.
• Optimality properties?
• Usually m= 2 so continuous and differentiable on boundaries.
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Kaiser-Bessel: Optimizing Order
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Kaiser-Bessel: Optimizing Width
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Kaiser-Bessel: Optimizing Scaling Factors
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Kaiser-Bessel: Scaling Factors Tradeoff
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Kaiser-Bessel vs Min-Max Interpolators
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Fourier-Based Tomographic Projection (Radon Transform)

1. Compute 2× oversampled 2D FFT of object

2. Min-max interpolation onto polar coordinates (5×5 neighborhood)

3. Multiply spectrum by effects of
• shift-invariant detector blur
• and (square) pixel basis.

4. 1D inverse FFT for each sinogram row
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Forward Projector Simulation
• 128×128Shepp-Logan digital phantom
• 160 bins × 192 angles sinogram
• 1-bin rectangular detector PSF
• Exact DSFT-based Fourier projector (no interpolation)

vs NUFFT based on min-max interpolator
• 6.3s precompute time on 1GHz Pentium III / Linux
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Bilinear Interpolation (“Gridding”) Comparison
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Back-projector (Adjoint) Test
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NUFFT Projector Time/Accuracy Tradeoff
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QPWLS Iterative Reconstruction
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Summary

Min-max interpolation approach for NUFFT:
minimizes worst-case interpolation error.
Accurate and fast projector/backprojector for 2D tomography.

Future Applications
• MRI with field inhomogeneity
• MRI with multiple coils
• 3D PET

Limitations / Challenges
• Slightly negative ai j ’s (in tomography)
• Shift-invariant PSF
• Parallel-beam geometry
• Non-uniform radial sampling in ring PET geometry
• Numerical conditioning for large J
• Ordered-subsets
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Iterative MRI Reconstruction with Field Inhomogeneity
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